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Ultrasonic wave transport in a system of disordered resonant scatterers: Propagating resonant
modes and hybridization gaps
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We present the results of ultrasonic pulse propagation experiments on suspensions of plastic spherical scatterers
immersed in water. This system was selected to study the effects of scattering resonances on wave transport. By
separating the coherent ballistic component from the multiply scattered wave field, both the dispersion relations
and the diffusive propagation of ultrasound were investigated. We show that the dispersion relation is marked by
a series of hybridization gaps due to the coupling between the propagating modes of surrounding fluid and the
scattering resonances. Effects of dissipation on the formation of the gaps were investigated. We find evidence in
our ultrasonic data for the existence of a (slowly propagating) second longitudinal mode, also seen in Brillouin
scattering experiments, that arises from the coupling between the resonant scatterers. These results are interpreted
with an effective medium model based on the spectral function approach, which gives an excellent description
of the dispersion relations in this system. Measurements of the multiply scattered ultrasound allow both the
diffusion coefficient and the absorption time to be measured as a function of frequency. The relationship between
the diffusion coefficient and the ballistic data is discussed, while the measurement of the absorption time from
the decay of the multiply scattered coda enables the absorption and scattering lengths to be separated. These
ultrasonic measurements and their interpretation based on the spectral function approach give a very complete
picture of wave transport in this strongly scattering resonant system.
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I. INTRODUCTION

The last two decades have seen remarkable progress in the
study of classical wave transport through strongly scattering
media, both random and ordered.1,2 One of the important
problems continues to be the role of scattering resonances
on the transport of waves through the medium. The coupling
between scattering resonances and propagating waves in the
medium surrounding the scatterers can lead to the formation
of band gaps, often referred to as hybridization gaps. The
underlying mechanism can be viewed as level repulsion when
two bands of the same symmetry cross each other. Such
hybridization gaps have recently attracted growing interest
in the context of phononic crystals,3–6 where they provide
an alternate mechanism to Bragg scattering for the formation
of band gaps. Scattering resonances are also central to the
properties of metamaterials,7 where the resonances occur at
low frequencies such that the wavelength is much larger
than the size of the scatterers—this facilitates an effective
medium description of the transport and can lead to remarkable
properties, such as a negative index of refraction8 and a highly
efficient blocking of low-frequency sound.9,10

Compared with ordered materials, random systems have
an advantage for studying hybridization gaps and related
phenomena, since their observation is not potentially con-
founded by Bragg scattering. For fundamental studies, ul-
trasonic techniques also have some advantages since they
can readily detect the wave field (not just the intensity),
perform experiments resolved in both time and space, and
study systems on a convenient range of length scales that
facilitate the control of the properties of the scattering medium
over a wide range of scattering contrasts. One example
is suspensions of plastic spheres randomly dispersed in a
liquid, which show rich acoustic behavior in the strongly

scattering intermediate frequency regime.11–15 The origin of
this interesting behavior lies in the strong acoustic scattering
resonances of plastic spheres in a liquid. Previous Brillouin
scattering measurements of the acoustic dispersion curves in
these systems have revealed that at certain wavelengths there
can be two propagating modes.11,14 These modes have been
identified as a fast longitudinal mode with phase velocity in
between the velocities of the plastic and liquid components
and a slower Stoneley or interfacial wave mode, which
arises from the coupling of the neighboring plastic sphere
resonances.12,13 It has also been found that a very pronounced
gap appears in the fast mode, coinciding with the appearance
of the coupled Stoneley mode. Even though these phenomena
occur at intermediate frequencies in this system, where the
wavelength is comparable with the size of the scatterers, the
experimental results have been successfully modeled by an
effective medium model based on a spectral function approach,
which enables the dispersion curve to be calculated by finding
the peaks in the spectral function of the system.12,13,16,17

Figure 1 shows the calculated spectral function for poly-
methylmethacrylate (PMMA) spheres randomly packed in
water. The peaks of the spectral function delineate the
dispersion curves of the propagating modes (or more precisely
quasimodes since the modes have a finite width due to
scattering) because, for these values of ω and k, the peaks
correspond to modes with the least scattering. Since the
widths and heights of the peaks vary with frequency, and the
direction of the change in peak height is parallel to neither
the frequency nor the wave vector axes, different types of
experiments may measure different dispersion relations.17 Two
cases are illustrated in Fig. 1, where the dashed line shows the
results of finding the peak frequencies by scanning the spectral
function at constant k, while the solid line shows the results
of constant frequency scans. Brillouin scattering measures
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FIG. 1. (Color online) Spectral function calculated without ab-
sorption for a system consisting of PMMA spheres randomly packed
in water at a volume fraction of 0.55. The solid line shows the peaks
in the spectral function found by holding ω constant and scanning
through k. The dashed line shows the peaks found when holding k
constant. The dotted line gives the dispersion relation for water, and
the horizontal arrows indicate the resonant frequencies of a single
PMMA sphere in water.

the modal frequency at a constant wave vector selected by
the scattering angle between the incident and scattered light
beams, and so it measures the dashed dispersion curve. By
contrast, ultrasonic transmission measurements are performed
by inputting a wave at a particular frequency (or band of
frequencies in the case of a pulsed experiment) and measuring
the corresponding phase shift of the transmitted wave, from
which the wave vector is determined. Therefore, ultrasonic
experiments measure the solid dispersion curve shown in Fig. 1
and can reveal complementary information on the dispersion
relations and transport properties to that obtained by Brillouin
scattering experiments. The two dispersion curves can be quite
different at frequencies near the band gaps and especially in
the region where the Stoneley mode first appears, but both
methods of determining the dispersion relations predict a gap
in the fast longitudinal mode centered at 2ωa/v0 = 2.8. Here,
ω is the angular frequency, a is the radius of the solid spheres,
and v0 is the speed of sound in the liquid.

We denote this gap the hybridization gap, arising from
the interaction between the propagating mode in the water-
sphere mixture and the (Stoneley) resonance of the spheres. In
the present case, the resonances on neighboring spheres couple
and form another propagating mode with its own dispersion
relation. The simple picture of level repulsion would give rise
to the gap. It will be seen later, however, that when there
is absorption in the system, a propagating mode can appear
in the gap, i.e. the gap closes. This apparently paradoxical
result can be explained by noting that, since absorption can be
modeled by an imaginary part of the modulus, the evanescent
wave vector (for the evanescent mode in the gap) acquires
an imaginary part, i.e. a propagating component. Such a

propagating mode in the hybridization gap is precisely what
has been measured in our experiments; it is also predicted
in the spectral function model by using a complex modulus
to describe the constituent materials with the imaginary
component given by measured absorption constant.

This paper describes the results of ultrasonic pulse transmis-
sion experiments to investigate these phenomena by measuring
wave transport in a strongly scattering dispersion of plastic
spheres. By using ultrasonic pulses, we are able to efficiently
separate the coherent ballistic pulse from the multiply scattered
sound.17,18 This allows us to measure the dispersion curves in
the strongly scattering regime and therefore explore the band
gaps in the fast mode that arise from the hybridization of the
resonances and the water dispersion curve as well as from
the properties of the unusual slow mode. Even though the
multiply scattered component of the total transmitted wave
field is surprisingly small, we are able to determine the time-
dependent intensity profile and model it using the diffusion
approximation, enabling the average diffusion coefficient
and absorption time to be measured. Thus, our experiments
and modeling using the spectral function approach give a
remarkably complete picture of the effects of hybridization
on wave transport in this strongly scattering resonant system.

In what follows, sample preparation and measurements
of the ballistic and multiply scattered components of the
transmitted waves are described in Sec. II. In Sec. III, we show
that the ballistic component of the waves can be successfully
modeled by the spectral function approach with scattering loss
being the main source of extinction. The multiply scattered
component, on the other hand, is very well described within the
framework of diffusive behavior. Relevant underlying physics
is discussed. We conclude in Sec. IV by summarizing the main
points of our work.

II. EXPERIMENTS

A. Ballistic measurements

Samples were prepared using two different kinds of plastic
beads. The first set of samples was made using PMMA spheres,
which were sieved from a polydisperse distribution of spheres
to limit the diameter to the range 0.180 to 0.212 mm, giving a
mean diameter 2a = 0.196 mm. The spheres were randomly
packed in water at a volume fraction of 0.55 between two
thin plastic walls, which were separated by a spacer that
controlled the sample thickness. We prepared two samples with
thicknesses of 2.46 and 0.56 mm. The longitudinal velocity
in bulk PMMA is 2.75 mm/μs, the transverse velocity is
1.1 mm/μs, and the density is 1.19 g/ml. Our second set
of samples was prepared using very monodisperse 1.2-mm-
diameter acetate beads. Acetate has similar transport properties
with a longitudinal velocity of 2.50 mm/μs, a shear velocity
of 1.05 mm/μs, and a density equal to 1.28 g/ml. These two
kinds of plastic thus have almost the same ultrasonic scattering
properties, and the samples made with them exhibit the same
qualitative and very similar quantitative behaviors. There is a
strong acoustic impedance (ρv) mismatch between the spheres
and the water, which has a sound velocity, v0 = 1.49 mm/μs,
and a density of 1.0 g/ml. In particular, the shear velocity in the
solid spheres is quite low and is smaller than the longitudinal
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velocity of the surrounding water. Thus, we expect strong
scattering resonances when the wavelength λ is comparable to
the sphere size.

The experiments were performed with the samples im-
mersed in a tank filled with water, which provided a convenient
low-loss wave transport medium between the samples and the
ultrasonic planar transducers. The samples were placed in the
far field of the transducers. One of the transducers generated
the ultrasonic pulses, which had a broad quasiplanar profile
when they reached the samples, and the other transducer
detected the transmitted ultrasound. The sound transmitted
through the sample is a superposition of the coherent ballistic
component plus the multiply scattered component. When the
wavelength of the sound is comparable with the sphere size, the
scattering can be strong, and in order to measure the ballistic
transport properties, we must separate the coherent ballistic
signal from the multiply scattered waves, which follow random
scattering paths through the sample.18 Since a piezoelectric
transducer measures the average wave field across its face,
the spatial incoherence of the speckle pattern created by the
scattered ultrasound causes it to cancel when a transducer
with sufficiently large surface area is used (1-in-diameter, in
our experiments), so that the remaining detected signal is the
coherent ballistic wave. In cases where this spatial averaging
in the detector does not completely remove the scattered
signal, the field can also be ensemble averaged over different
realizations of the sample; however, this was not necessary
here.

Ballistic measurements were taken predominately on the
PMMA samples and at frequencies spanning the range from
well below to well above the position of the first gap in the
fast mode. At frequencies below the gap, only one mode is
observed (Fig. 2). The phase velocity at these frequencies was
found by measuring the phase change of the sound transmitted

FIG. 2. Input and transmitted ballistic pulses below the gap for
sample thicknesses of 0.56 mm (middle panel) and 2.46 mm (bottom
panel) at a frequency of 2.0 MHz (corresponding to 2ωa/v0 = 1.69).
The pulse amplitudes are normalized so that the peak of the input
pulse is equal to 1.

FIG. 3. (Color online) Input and transmitted ballistic pulses in
the gap for sample thicknesses of 0.56 mm (middle panel) and
2.46 mm (bottom panel) at a frequency of 3.4 MHz (corresponding
to 2ωa/v0 = 2.81). The thicker sample shows direct evidence of two
propagating modes. The pulse amplitudes are normalized so that the
peak of the input pulse is equal to 1.

through each sample. The scattering mean free path ls and
group velocity vg were also determined, using the methods
described in Ref. 17. When the frequency was raised to a value
in the expected gap, we detected two distinct and comparably
strong ballistic modes. This is most evident from the thick
sample data, as the modes have had a chance to separate in
time due to their different group and phase velocities (Fig. 3).
To be absolutely certain that this effect was not just due to
the polydispersity of the PMMA spheres, we also performed
experiments using the monodisperse acetate beads. We found
similar behavior with two modes in the gap. For the mode in
the hybridization gap frequency region, we shall see in Sec. III
that it can be accounted for by the presence of absorption.

To interpret the two-mode data, we fit the thick sample
data with two interfering, scaled versions of the input pulse,
each with different velocities, amplitudes, and slightly larger
widths. We used a digital filtering technique to control the
bandwidth of the pulses so that the bandwidth was narrow
enough to limit dispersive spreading of the pulses while
keeping the width (in time) of the pulses sufficiently short
that the two modes could be resolved in time for this sample.
Then to check the robustness of the fit, we calculated the
transmitted pulse shape for the thin sample, given the same
velocities, and compared it to the corresponding data. This
method works well, especially at frequencies where the two
modes destructively interfere at the output face of the thick
sample (Fig. 3). Thus, it was possible to measure the velocities
and mean free paths for both modes in pulsed transmission
experiments.

B. Multiply scattered ultrasound measurements

In order to take advantage of the excellent monodispersity
of the acetate beads, the measurements of scattered ultrasound
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were predominately performed on samples made with the
1.2-mm-diameter acetate beads. The beads were randomly
packed on top of a thick sheet of polyethelene (whose acoustic
impedance is approximately equal to that of water) and held
in place by side walls with the top surface open to the water.
This apparatus was placed in a large tank of water with a
transducer approximately 40 cm underneath the bottom wall
to generate a plane wave input pulse. Since acoustic detectors
measure the average field across their surface, to measure the
scattered ultrasound in the near field without cancellation, one
must use a detector whose area is smaller than the speckle size
(∼λ2). To measure the transmitted field in a single speckle,
we used a miniature hydrophone with a diameter of 0.4 mm
suspended about 2 mm above the top surface of the beads. This
vertical geometry was used in order to eliminate the effects of
a second (top) wall on the scattered sound, thereby simplifying
the analysis.

The transmitted field as a function of time was measured
in many different speckles by moving the hydrophone to
different positions above the sample. Figure 4(a) shows some
representative examples of the results at different hydrophone
positions. At early times, the signals are dominated by the
ballistic pulse (solid line), while at later times, an incoherent
scattered component begins to emerge, as indicated by the
random phase and amplitude variations of the signal with
hydrophone position. In order to isolate the scattered sound,
we essentially reversed the process used above for ballistic
measurements. We determined the average ballistic pulse
[Fig. 4(a)] and subtracted this from the total transmitted
sound field, thereby extracting the multiply scattered sound
[Fig. 4(b)]. The envelope of the wave field was determined
and then squared to calculate the signal that is proportional
to the scattered intensity as a function of time for each

FIG. 4. (Color online) (a) Dotted lines show the total ultrasonic
field transmitted through a L = 9 mm sample at 2ωa/v0 = 2.23
for several different hydrophone positions (data denoted by different
colors); the solid black line shows the average or ballistic waveform.
(b) Multiply scattered ultrasound at the same hydrophone positions.
(c) Ensemble-averaged scattered intensity. The average bead radius
is 0.98 mm.

speckle measured. Averaging together the scattered intensity
for each of the speckles gave the ensemble-averaged intensity
for the multiply scattered component of the transmitted waves
[Fig 4(c)], which was then normalized by the peak intensity in
the input pulse.

III. RESULTS AND DISCUSSION

A. Ballistic modes

Using the experimental techniques described in the previous
section, we measured the frequency dependence of the ballistic
propagation parameters through the two PMMA samples.
From the measured phase shift �φ, the wave vector k =
�φ/L was calculated to obtain the dispersion curves plotted
in Fig. 5. Excellent agreement between the data for the
two sample thicknesses is evident. At low frequencies, there
is only one mode, but for 2ωa/v0 above about 2.5, we
begin to see evidence of a second propagating mode, as
described in the previous section and as shown in Fig. 3. The
second mode has been identified as a propagating Stoneley
mode,12,13 resulting from the coupling between the scattering
resonances of neighboring spheres. It has a much slower phase
velocity and in general a somewhat slower group velocity
than the main longitudinal mode. We continue to see both of
these modes over the rest of the measured frequency range,
up to 2ωa/v0 = 5.

The relative amplitudes of the two modes in our experiments
depend not only on the strength of each mode (i.e. the scattering
mean free path, ls , and absorption length, la), but also on the
relative efficiency of coupling of the incident and outgoing
beams into and out of each mode. We find that, over the
frequency range of interest, the transmitted amplitudes of the
two modes are comparable to each other. The error bars on
the relative amplitudes from the two-pulse fitting for the thin
sample are too large to extract the coupling coefficients, but

FIG. 5. (Color online) Measured (symbols) and theoretical (lines)
dispersion curves. The dashed line has no absorption in the cal-
culation; the solid line includes the effects of absorption with its
magnitude being determined from the measured absorption times.
The horizontal arrows indicate the resonant frequencies of a single
PMMA sphere in water.
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we are able to make reliable estimates of the extinction lengths
(1/le = 1/ls + 1/la) of each mode by using the data from the
two sample thicknesses. This is possible since the reduction
in signal due to coupling losses and boundary reflections is
independent of sample thickness, while the contribution due to
scattering and absorption depends exponentially on the ratio of
sample thickness to extinction length. The experimental results
are shown in Fig. 6, where the solid and open symbols represent
the extinction lengths for the fast and slow modes respectively.
Also, as will be described in the next section, we can obtain
a measurement of the absorption length in the sample from
the ensemble-averaged scattered intensity. We find that this
absorption length is approximately 10 times the extinction
length, indicating that the attenuation of the ballistic signal
is dominated by scattering. At low frequencies, the extinction
length drops precipitously as the frequency increases, but near
2ωa/v0 = 2.8, there appears only to be a quasigap, as the
extinction length for the fast mode remains finite at a value that
is similar in magnitude to its value at higher frequencies. As
was noted previously, in order to ensure that the closing of this
quasigap was not only due to the polydispersity of the PMMA
spheres, we performed a test using the very monodisperse
acetate bead samples and saw the same behavior. Both in the
quasigap and at higher frequencies, the extinction lengths for
the two modes are quite similar; the extinction lengths are
between one and two particle diameters, and they only show a
small amount of structure at frequencies in and above the first
quasigap.

In order to interpret the measured dispersion curve, we use a
spectral function approach, which allows ballistic wave propa-
gation to be described at intermediate frequencies where con-
ventional effective medium approaches breakdown.12,13,16,17

Although our calculations took the elastic wave nature of
ultrasonic waves into account (as described in detail in
Ref. 13), it is instructive to illustrate the principles of the

FIG. 6. (Color online) Measured extinction lengths for the fast
(solid symbols) and slow modes (open symbols) and the results of
the spectral function calculation for both modes with absorption
included (solid and dashed lines for the fast and slow modes,
respectively).

technique using the simpler scalar wave case. The scalar wave
equation may be written as,[

∇2 + ω2

v2
eff

−
(

ω2

v2
eff

− ω2

v2(r)

)]
ψ = 0, (1)

where ψ denotes the wave amplitude, v(r) is the local
phase velocity, and a constant term involving an effective-
medium wave speed, veff , has been added and subtracted. The
ensemble-averaged Green’s function, Ge(ω,�keff), is given by

Ge(ω,�keff) = 1

ω2/v2
eff − k2

eff − �veff (ω,�keff)
, (2)

where �veff is the self energy calculated relative to the effective

medium speed veff , and
⇀

keff is the Fourier transform variable of
�r . To the leading order in n, the number density of scatterers,

�veff ≈ nfveff (0)

4π
, (3)

where fveff (0) is the forward-scattering amplitude for a single
scatterer. Our system may be viewed as a collection of basic
units, each made up of solid spheres, coated by a water
layer, and embedded in an effective medium, whose phase
velocity is identified at each (ω,�keff) point as veff = ω/keff . The
scattering amplitude can then be obtained as the solution to the
boundary value problem corresponding to this basic scattering
unit.13,16,17 Thus, from Eq. (3), we obtain the complex values
of the self energy �veff = �ω/keff (ω) at each point in the
ω − keff plane. If we use the condition that veff = ω/keff , the
Green’s function is then given by Ge(ω,�keff) = −�−1

ω/keff
(ω).

We can find the modes of excitation of the system by
identifying maxima in the spectral function, −ImGe(ω,�keff) =
Im�−1

ω/keff
(ω). A contour plot representing the spectral function

calculated in this way is shown in Fig. 1. The maxima in
the spectral function are minima in the scattering and thus
correspond to the propagating modes of the system. In a
propagation experiment, ultrasonic pulses with a particular
frequency spectrum are incident on the sample, and the
response is measured. Therefore, as alluded to earlier, in order
to compare with our experiments, the peaks in the spectral
function should be found by holding ω constant and scanning
through keff .

Since, as measured in the scattering experiments, there is
considerable absorption in our samples; it was necessary to
include the effects of this absorption in the calculation of the
spectral function. To do this, we used the measured absorption
length in our PMMA samples and assumed that the absorption
length depends inversely on frequency throughout the entire
frequency range, as suggested by the experimental data. This
frequency dependence is also consistent with measurements of
dissipation in suspensions of glass beads in water19 and in bulk
PMMA. We then included this absorption in the calculation of
the spectral function by allowing the moduli of the constituent
materials to be complex, evenly spreading the dissipation
over the coating and the solid sphere. By distributing the
absorption inside this heterogeneous material in this way,
we only approximately model the possible absorption loss
mechanisms, which include viscous losses at the interfaces
and to a lesser extent bulk absorption losses in the water
and plastic. The contour plot in Fig. 7 shows the effect of
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FIG. 7. (Color online) Spectral function for a PMMA
sphere/water mixture at a volume fraction of φ = 0.55 with the
measured absorption included in the calculation. The solid line is the
dispersion curve found when the peaks are located by varying k while
holding ω constant. The dotted line gives the dispersion relation for
water and the horizontal arrows indicate the resonant frequencies of
a single PMMA sphere.

including (measured) absorption in the calculation of the
spectral function of PMMA spheres randomly packed in water
at a solid volume fraction of φ = 0.55.

The dispersion curve, found by scanning through keff at
constant ω, is also shown in Fig. 7. We contrast Fig. 7 with
Fig. 1, in which no absorption was included in the calculation,
and a complete gap in the main longitudinal mode (no maxima
in the spectral function, indicating no modes) is seen. When
absorption is added, Fig. 7 shows that the quasigap closes, and
there is a weak longitudinal mode as well as the Stoneley mode,
which corresponds to the situation seen in our experiments. It
is important to note the sensitivity of ultrasonic measurements
to this effect. If one were to hold the wave vector constant
and scan through frequency, then this cut through the spectral
function shows only a smooth minimum with no peak in the
gap. In this case, there would appear to be a complete gap in the
fast longitudinal mode, both with and without absorption, as
was found in Brillouin scattering experiments.11 Note also that
near 2ωa/v = 2.5, there is a range of wave vectors for the slow
mode between 2.5 < keffa < 5 in which the spectral function
decreases monotonically (no peaks exist) when scanned at
constant ω, so the dispersion relation for the slow mode is not
resolved. It is also not accessible to ultrasonic transmission
measurements for this range of wave vectors.

In Fig. 5, we show the comparison of our experimental
data to the dispersion curve calculated with the measured
absorption included (solid curves). There is good agreement
between theory and experiment at low frequencies, but there
are differences for the longitudinal mode once the first
quasigap is reached. The experimental data in the quasigap are
more smoothed out than the calculation—the theory shows a
characteristic zigzag shape with a range of frequencies where

the predicted group velocity is negative, while the experiments
indicate large but positive group velocity. The difference
between theory and experiment near the first quasigap may
result from the uniform way in which absorption was included
in the calculation, so that effectively it underestimates the
effects of absorption on the dispersion curve in this frequency
range. This is likely to occur since the absorption and the
wave field amplitudes are both spatially inhomogeneous,
but the positions where maximum absorption occurs will
not necessarily coincide with maxima in the amplitude at
these frequencies. Despite this limitation of the model, the
calculation shows the necessity of including absorption in the
theory as well as the sensitivity of the dispersion relations
to absorption at frequencies near band gaps,20 especially
for hybridization gaps associated with scattering resonances.
At frequencies above the first gap, including the second
smaller gap, the experimental data for both the Stoneley
and fast longitudinal modes agree remarkably well with the
theoretical calculations. It is worth emphasizing that there are
no adjustable parameters in the theory.

We can also use the same theoretical model to calculate the
scattering mean free path, yielding the results shown in Fig. 6
by the solid and dashed lines for the fast and slow modes,
respectively. Here, the agreement with the data is not as good;
the theory has much more structure and is generally larger
than the experiment. Once again, if the effective absorption
included in the theoretical model were larger, there would
be a better correspondence between theory and experiment;
however, since a microscopic model for the absorption has
not been developed, it is not really meaningful to attempt to
achieve a better description of the data by imposing an average
absorption that differs significantly from that measured in our
scattered ultrasound measurements.

B. Multiply scattered ultrasound

Measurements were taken on two acetate bead samples
with thicknesses of 9.0 and 13.0 mm and at frequencies
spanning a range from below to above the lowest quasigap in
the dispersion curve. Figure 8 shows the ensemble-averaged
scattered intensities transmitted through these samples at
several frequencies. The magnitude of the scattered signals is
surprisingly small, especially when compared to the ballistic
signals, which are larger than the scattered signals (see Fig. 4),
in spite of L/ls being of the order of 10 for the thicker sample.
In fact, at frequencies in the first quasigap, we were unable
for the thicker sample to make reliable measurements of the
scattered component above the background level. One possible
explanation for this behavior is the very strong absorption in
the samples.

Diffusion theory has been found to provide an accurate
description of multiply scattered ultrasonic wave transport
through strongly scattering materials for a wide range of
scattering strengths and sample thicknesses.18 It is therefore
used here to interpret our results. The diffusion approximation
neglects all phase information and models the transport of
scattered ultrasound energy as a random walk through the
sample with a path step given by the transport mean free path
l∗, a velocity given by the energy velocity vE , dissipation
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FIG. 8. (Color online) Measured ensemble-averaged scattered
intensity for (a) the L = 9-mm- and (b) L = 13-mm-thick samples
at several frequencies. The squares are data at 2ωa/v0 = 1.82, and
the solid line is a fit of diffusion theory to these data. Circles are at
2ωa/v0 = 2.23 with a dashed fit, and triangles are at 2ωa/v0 = 2.84
with a dotted fit. The inset (c) shows the corresponding input pulse
intensity.

described by an absorption time τa , and a diffusion coefficient
given by

D = 1
3vEl∗. (4)

When there are two modes that are mixed by scattering,
the diffusion approximation can still be used, but the av-
erage transport is now described in terms of an average
effective diffusion coefficient, energy velocity, and transport
mean free path. Assuming equipartition of the energy between
the modes of the system and the simplest approximation for the
energy density at a given frequency (U ∝ 1/v3

ph), the effective
diffusion coefficient (given by the energy density weighted
average) can be written, in analogy to the equipartition of
elastic waves21–23 as:

Deff =
DL

v3
ph,L

+ DS

v3
ph,S

1
v3

ph,L
+ 1

v3
ph,S

, (5)

where DL and DS are the partial diffusion coefficients for the
fast longitudinal and Stoneley modes, respectively.

In particulate suspensions, the energy velocity has been
found to be nearly equal to the group velocity and the transport
mean free path to be close to the scattering mean free path.24

However, the first relationship will not hold true for the

longitudinal mode in the quasigap when its group velocity
is very large or perhaps even negative. The group velocity of
each of the two modes can be measured from the slope of their
respective dispersion curves, and as described previously, the
scattering mean free path of each mode has been measured.
Fits of diffusion theory to the ensemble-averaged scattered
intensity, using the appropriate boundary conditions,18 enable
the diffusion coefficient D and the absorption time τa to be
measured. Thus, at frequencies above and below the quasigap,
the measured values of D can be compared with estimates
based on the ballistic parameters using Eqs. (4) and (5), with
vE ≈ vg and l∗ ≈ ls .

The fits of diffusion theory to the average time-dependent
transmitted intensity are shown by the lines in Fig. 8. In
panel (a), the data and fits for the 9-mm-thick sample are
shown, while panel (c) shows a representative input pulse.
By comparing the width of the input pulse to the thin sample
data, it is clear that the multiple scattering does not extend
over very long propagation times, as most of the width of the
diffusive signal is similar to the finite width of the input pulse.
Nonetheless, with the width of the input pulse correctly taken
into account, the fits of diffusion model give a reasonably good
description of the data for both the thin and thick samples
[Figs. 8(a) and 8(b)]. However, the overall magnitude of
the transmitted intensity is much less than that predicted by
diffusion theory, an effect which was accounted for in the fits

FIG. 9. (Color online) Measured diffusion parameters as a func-
tion of frequency: (a) Diffusion coefficient (solid symbols) with the
values calculated from Eq. (5) (open diamonds). (b) Absorption time
with the solid curve showing a fit to a ω−1 behavior. (c) Amplitude
factor.
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by an amplitude factor, A < 1. The parameters obtained from
the fits of diffusion theory to the ensemble averaged scattered
intensity data are shown in Fig. 9 for several frequencies. Note
that the long time tail is approximately exponential and that
within the diffusion model the decay constant is

1

τ
= π2D

L2
eff

+ 1

τa

, (6)

where Leff > L is the effective thickness of the sample, which
is larger than L by the distance over which the diffuse intensity
extrapolates to zero outside the sample.25 For the values of D
and τa shown in Fig. 9, this equation indicates that the long
time decay is dominated by absorption. Thus, the diffusion fit
should give a reliable estimate of the absorption time in the
sample, independent of the surprisingly small amplitude factor
and insensitive to uncertainties in D.

Figure 9(a) also compares the measured values of D from
the multiply scattered intensity profiles with values of the
diffusion coefficients estimated from Eq. (5), using estimates
of the transport mean free path and the energy velocity from
the ballistic data. Remarkably good agreement is found both
below and above the quasigap. As well, consistent values of
the diffusion coefficients and absorption times are obtained
from the fits of the diffusion approximation to the data for the
two sample thicknesses. Thus, even though the quality of the
data for the time-of-flight intensity profiles is not as good as
in some other systems18 because the multiply scattered signals
are so small, reliable values of D and τa were obtained from
the fits. The results for the absorption time extend over a wide
enough frequency range for the frequency dependence to be
investigated: as shown by the solid curve in Fig. 9(b), we
can see that the absorption time is inversely proportional to
the frequency (with the exception of one anomalous point
at 2ωa/v0 ≈ 2.2, near the bottom of the quasigap). Also
shown on the same graph is the absorption time measured
at one frequency for a PMMA sample, which is consistent
with the data for the acetate beads. These results were used
to determine the values of the absorption incorporated in the
effective medium model for the ballistic data discussed in
Sec. III A.

IV. CONCLUSIONS

Ultrasonic pulse propagation experiments in suspensions of
plastic spherical scatterers provide an excellent way of study-
ing the effects of scattering resonances on wave transport in
random media. By separating the coherent ballistic component
from the multiply scattered wave field, both the dispersion
relations and the diffusive propagation of ultrasound have been
studied in this system. The dispersion relation is marked by

a series of hybridization gaps due to the coupling between
the propagating modes of surrounding fluid and the scattering
resonances, which involve interfacial modes of the spheres.
Our ultrasonic experiments and effective medium theory
show that the hybridization gaps are partially closed when
absorption is present, an effect that is not evident in previous
Brillouin scattering experiments on this system. This effect
is demonstrated not only by the shape of the experimental
dispersion relation but also by the predictions of our effective
medium model, which enables the dispersion relations to be
compared both without and with absorption. This theory is
based on a spectral function approach and gives a description
of the dispersion relations in this system that is in good
overall agreement with the experimental data. The coupling
between the scattering resonances on adjacent spheres leads
to the formation of an additional longitudinal branch in the
dispersion relation, which is also seen in our experiments.
This combination of pulsed ultrasonic experiments and theory
has enabled an in-depth study of hybridization gaps and how
they are affected by absorption, a topic of current interest in
the context of phononic crystals, where hybridization provides
an alternate mechanism to Bragg scattering for creating band
gaps in ordered systems.

Despite the very strong scattering in this system at in-
termediate frequencies, there is a surprisingly small amount
of scattered sound transmitted through the samples. Ab-
sorption likely accounts for most but perhaps not all of
this. Nonetheless, it was possible to measure the transport
of multiply scattered ultrasound through the samples for a
limited range of propagation times. By fitting the data with
predictions of the diffusion approximation, reliable values
of both the diffusion coefficient and absorption time were
measured. The diffusion coefficient is consistent with simple
estimates based on the ballistic parameters, giving a rather
complete picture of wave transport in this system. Since the
scattering length is an order of magnitude smaller than the
absorption length, the exponential decay with distance of the
coherent ballistic signal is dominated by scattering, making it
impossible to determine the absorption directly from ballistic
pulse propagation experiments. Hence, the direct measurement
of the absorption that was made from the decay of the multiply
scattered wave intensity with time is especially useful. These
measurements show that the absorption increases linearly with
frequency, a result that is consistent with other experiments on
random systems.
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